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~ ABSTRACT. This paper considers the system of nonlinear Dirichlet boundary
value problems

Lu(z) = M (u(z), v(=)) .
{ Lo(z) = uglu(z), v(z)) } =0,

a bounded domain in R™. Here L is a strongly, uniformly elliptic linear partial
differential operator, ),y are real parameters, and f,g:R? — R are smooth
with

f(07 O) =0= g(ov 0)'

A detailed analysis of the solution set to the system is given from the point of
view of several parameter bifurcation theory.

1. Introduction. Much attention has been focused recently on several param-
eter bifurcation problems (see, for example, Alexander and Antman (3, 4], Cantrell
[7] and the references therein). One of the principal mathematical applications
of the theory (which the above-mentioned and other works have developed) is to
the bifurcation phenomena of coupled systems of nonlinear elliptic boundary value
problems depending on several parameters. The interest in such problems is strong.
For instance, the significance of componentwise positive solutions to such systems
in the applications has been noted in the recent survey article of Lions [21]. Also,
Protter [22] notes that connection of the study of the linearized version of such
systems to the problem of determining lower bounds on eigenvalues of higher-order
differential operators.

One natural way to classify such systems is according to the manner in which
they are coupled. The terms strongly coupled and weakly coupled have more or
less standard usage in the literature. However, neither term conveys the distinction
we seek to make. Therefore we have chosen to adopt the terms state coupled and
parametrically coupled in this paper. We shall say that a system of nonlinear ellip-
tic boundary value problems is state coupled if the linearization about the trivial
solution (we assume tacitly that such exists) of the system is coupled in the state
variables. It is said to be parametrically coupled if the linearization is coupled only
by the parameters. We note that the term completely coupled used by Zachmann
[26] is essentially the same as our term state coupled. ‘
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Let us now illustrate these terms. Consider

k
(ps ()W (1)) + {qim) +>. Ajam)} vi(t:)
j=1

(1.1) +’I‘i(ti,>\1,...,/\k,yi(ti),y,f(ti)) =0,
i (A:) + oqyi(As) =0,

Biyi(B;) + Biyi(Bs:) =0,

t: € [Aiy Bi],  (leul +1eiD(B:l +18)) >0,  1=12,...,k

If r4: [As, Bi] x R¥ x R? — R is such that r;(t, A1, ..., Ak, w, 2) = o(jw| + |2|)
uniformly for (t,A1,..., M) in compact subsets of [A;, B;] x Rk fori=1,...,k,
then (1.1) is an example of a parametrically coupled system. Ifk=1(1.1)isa
problem whose bifurcation phenomena were described by Crandall and Rabinowitz
[10], Rahinowitz [24], Turner [25], and others as an application of the odd mul-
tiplicity bifurcation theorem of Krasnosel'skii [20]. It is also intimately related to
the development of the now famous global extension of Krasnosel'skii’s theorem,
due to Rabinowitz [24].

If k> 1, (1.1) is a nonlinear perturbation of the Klein Oscillation Problem
(13, 19]. In this case, (1.1) was first studied by Browne and Sleeman (5, 6].
They demonstrated, under suitable conditions on the coefficient functions, the ex-
istence of unbounded branches of solutions (having a specified nodal structure in
each state component) to (1.1) emanating from the countably infinite set of points

(3;,...,3.) in RE far which the assaciated Klein Oscillation Problem possesses a
solution (ug,...,ux) with u; nontrivial for 7 = 1,2,...,k. Later, Cantrell [8, 9],

using methods analogous to those of [20 and 24], showed that the set of bifurcation
points for (1.1) is actually the union of k sets, each of which is a countably infinite
collection of pairwise disjoint unbounded & — 1 analytic manifolds in RF. The bi-
furcation points of Browne and Sleeman [5, 6] are the intersections of kofthe k—1
analytic manifolds, one from each of the k-collections. Furthermore, it is also shown
in [8 and 9] that the nature of the nontrivial solutions near a bifurcation point is
intimately related to the number (ranging from 1 to k) of the afore-mentioned k—1
manifolds upon which the point lies.

An example of a state coupled system of nonlinear boundary value problems is
given by : ‘
— (pu') + Pu+rv = Au + At N11(u, v) + AaNaa(u,v),
- (qv')' +Qu+ru = Av+ /\2N12('u,, ’U) + )\2N22(u, ’U),
a11u(0) + o2t/ (0) = 0 = a21v(0) + az2v'(0),
,Buu(l) + ﬂlz’u,l(l) =0= ﬂzl’v(l) + ,8221)’(1).
(Here we assume that N;; is higher order in |u|+ |v] for 7,7 = 1,2.) This system was
studied by Zachman [26]. He utilized a modified Lyapunov-Schmidt reduction and
the Weierstrass Preparation Theorem to establish that if (A1, A2) is near a simple
“cigenvalue” of the linearization of (1.2), then the number of small solutions of (1.2)
corresponds to the number of real roots of a certain associated polynomial.

This paper considers the solution set of another class of state coupled multipa-
rameter systems of nonlinear boundary value problems. The most general form of

(1.2)
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such systems is as follows:

{ -’quz(m) = )\ifi(ul (II}),UQ(CL‘), o 1un(z))a z €,

1.3
(1.3) u;(z) =0, 1=1,...,n, T €00,

where (0 is a bounded domain in R¥, k& > 1, with sufficiently smooth boundary and

A=(An.., ) €R™ Adisa uniformly elliptic linear or quasilinear differential
operator and f;: R™ — R is C*° and satisfies f;(0,0,...,0) =0fori=1,2,...,n.
This last assumption on f; insures that u; = uy = --- = u, = 0 is a solution to

(1.3) for any value of the multiparameter ). Thus, as with the preceding examples,
bifurcation theory provides an appropriate framework for an analysis of (1.3). In
particular, if G = A~' exists, then (1.3) may be equivalently expressed by an
equation of the form

(1.4) e= A()\)e+H()\,e),

where A = (A1,...,As) € R™ and e € E, a real Banach space. Here 4:R™ —
K(E) (the Banach space of compact linear operators on E) is continuous and
H:R"™ X E — E'is completely continuous and higher-order in e (uniformly for X
contained in compact subsets of R™). A(-) is also positive homogeneous of degree
one, i.e.

(1.5) A(t)) = tA(N)

for t > 0 and A € R™ This last fact allows us to invoke the odd multiplicity
bifurcation results of [3 and 7] in the case of (1.3).
Our attention will primarily be on the case n = 2, i.e. the system

(1.6) Au(e) = Af(u(z),v(z)),  Au(z) = pg(u(z), v(z)),
z €}, u(z) =0 = v(z), z € 00 The main purpose of this paper is to provide a
somewhat detailed description of the bifurcation phenomena associated with (1.6).
To this end, we utilize several different methods of the general theory. Each method
allows us to establish a different qualitative or quantitative aspect of the bifurcation
phenomena. In combination, an enhanced description results.

We begin in §2 with an examination of the linearization of (1.6), which has the
form

(1.7) Lu=Afiu+ Afyv, Lv = pgiu + ugov,
where L is an invertible strongly elliptic linear operator on ),
of of 9g 99
fl = 5 ) f2 = y g1 = 5 y g2 = 5 .
921(0,0) 99 0,0) 921 (0,0) 90,0

As is well known, values of (A, ) for which (1.6) exhibits branching behavior
at (A, 4,0,0) must be such that (1.7) has a nontrivial solution (u,v) at (A ). We
explicitly calculate this set (which we denote £ 4). We also determine the values of
(A, u) for which the operator

where

AO) = [/\flL'l /\sz"l} |

por L™t pge L1
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has generalized null space of dimension > 1 (i.e. algebraic multiplicity > 1). This
information will be crucial in determining (both locally and globally) the bifurcation
phenomena associated with (1.8).

Certain local aspects of these phenomena are discussed, beginning in §3. We
employ a Lyapunov-Schmidt method along the lines of Zachmann [26] in the sit-
uation of (1.3), thereby determining conditions under which one may obtain the
number of “small” solutions for parameter values near an algebraically simple ele-
ment of ¥ 4. Furthermore, in the spirit of Krasnosel'skii-Rabinowitz [20, 24], we
characterize components of nontrivial solutions emanating from the “first curves”
of T 4 as being of one sign (at least locally). We also observe that, in case 4 is a
Sturm-Liouville operator, this phenomenon has natural analogues for the “higher
curves” of X 4.

In §4, we note the existence of certain sets of nontrivial bifurcating solutions
with topological dimension at least 2 at every point. Since (1.6) (or more generally
(1.3)) is equivalent to a system (1.4) in which condition (1.5) holds, the global
multidimensional bifurcation theory of Alexander and Antman [3] is applicable for
this purpose.

We give two main global results. In §5, we show that provided

Vg —vhho M
VIg +Vhoa ~ A

where A; and )y are the first two eigenvalues of L (see (1.7)), the continuum
emanating from an algebraically simple element (Ao, ug) of L4 is unbounded in
directions transverse to L4 at (An. un). This result relies heavily on our analysis in
§2 of the linear system (1.7). In §6, we place some additional conditions on the maps
f and g. These conditions, along with our detailed understanding of (1.7), allow us
to use maximum principle arguments to assert global persistence of solutions with
positive u and v components.

As noted, we treat only the case n = 2 in §§2-6. However, many of the methods
and results of these sections have analogues in the case n > 2. We make the
relevant observations in §7. Finally, in §8, we conclude the article by illustrating
our techniques and results with a detailed examination of a particular system of
Sturm-Liouville boundary value problems.

2. The linearized system. Consider (1.7). Assume that L has eigenvalues

0< M <M <X < -+ — +oo0. Ifu= az, and v = fz,, where z, is an
eigenfunction corresponding to the nth eigenvalue A, of L, (1.7) becomes
e Y o
2.1 " T, = 0.
1) ( —pg M—pg J\ B
(2.1) has a nontrivial solution only if
(22) A = )\n(g2ﬂ' — )‘n)

(f1g2 — fag1)p — Anf1’

To see that £ = {(A,x): (1.7) has a nontrivial solution at (A, u)} C {(X,p):
(X, ) solves (2.2) for some n € Z*}, we proceed as follows. Observe that if u and
v are nontrivial solutions to (1.7), then

(2.3) (L= M1)(L — puge)z = pAfagrz
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for z = u,v. It follows from (2.3) that u and v satisfy

(2.4) (L-c—d)(L-c+d)z=0,
where
M+ M1 — 2
e=c(hp) = EER g d=d<A,u>=\/(~f—1—2—i@) + Mifagr.

Hence either ¢ +d or ¢ — d is an eigenvalue of L. Since the eigenvalues of L are
all assumed to be real, it must be the case that d?(},u) > 0 if (A, 1) € S4. Since
the quadratic form d?(, ) is positive definite if f2g2 < ffog1g2, we make the
following additional assumption on f and g:

(2.5) fi>0, ¢>0 fori=1,2
With assumption (2.5), positive definiteness is equivalent to
(2.6) f2g1 < figa.

(2.5)-(2.6) will be assumed in the sequel. Then ¢ +d = A, yields (2.2). We have
now established the following result.

PROPOSITION 2.1. Let T4 = {(A,u) € R? : (1.7) has a nontrivial solution at

(A, u)}. Then
An(gop — An) }
Sa=3{(Auxd= ,n=123...%.
4 {( #) (Fro2 — Fag)t — Mnfi’ "
We now denote A(%) by

(1)) — An(gatt — An)
W (f192 — fagi)p — firn'

Since An/g2 < fidn/(f1g2 — f2g1) by (2.5)-(2.6), A(®) is a linear fractional trans-
formation. One readily observes the following simple facts:

(1) A (1) =0 & p =M /gn.
(ii) A(™ has a vertical asymptote at u = fiAn/(f192 — f291)-

(i)

. Ang2
lim AM(y) = 272 > 0).
s too (1) f192 — fagr (>0)
(iv)
A (1) = —Anf2g1

[(frg2 = fagi) — Frdn]?
In order to analyze the bifurcation phenomena of (1.8), it is necessary that we
examine in detail the intersections of the curves {A(™):n =1,2,...}.
A simple computation shows that if u is such that A (u) = A(™)(4), where
n < m, then

()\m + A‘n) + \/()\n + )\m)z - 4f192)\n/\m/(flgl - f2gl)
292
Thus the curves A and A(™) intersect if and only if

AN [, 4fig J(ﬁ)
<Xn—1> +[2 f192 = fag1] \Am 120,
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which is equivalent to

(27) dn o VHo2 = VI
Am = VFig2 + Vg

Observe now that if (2.7) holds, then
M* (Am + An) = VAZ + (2 — 4f192/(f192 — f291)) AmAn + A2

a 2g2
_ Qmt2n) = VAL = 2((frg2 + f201)/(f192 = F2g1))AmAn + AT
2g0
> ()\m + )\n) - [/\m — ((flgz + fZQl)/(fIQZ - f2gl))/\n]
292
= )\nfl
figz — fagi

Similarly, if

= A+ An) + VA2, + (2 — 4f192/(f192 — f291)) Andm + A2
+ 292 3

then p} < Amfi/(f192 — f2g1). We may summarize as follows.

PROPOSITION 2.2. Let n,m € Z+ with n < m. The curves A(™) and A(™
intercort if and anly if (9.7 holds. Furthermore. if there 1s u such that A™(y) =

A™ (), then :
)\nfl )\mfl
s | e
figa— fag1 ~* " Fig2— Fagn
In particular, the following obtain:
(i) There are no u € R and distinet m,n,p € Z+ such that X™(u) = A™(u) =

NAME ,
(ii) There are nom € Z+, m > 1, and p < A1f1/(fig2 — fag1) such that

X () = A (p).
We next make the following observation.

PROPOSITION 2.3. Suppose (A, p) = (M (u),u) € 4. Then if (g)mn 5 a
solution of (1.7), corresponding to (\™) (i), u), where Lz, = AyZn,Tn # 0, (g) 18
as follows:

(i) afB < 0 provided p < 0 or p > An/ga;

(i) @ = 0 provided p = A, /g2;

(ili) B = 0 provided pu = 0

(iv) af > 0 provided 0 < p < An/ga.

Proor. If (g) is as in the hypothesis, then (‘g) can readily be shown to satisfy

ohn = X () fy + BXM (W) fo,  BAn = gy + Bugn.

(1)=(iv) then follow easily.
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DEFINITION 2.4. Let (A, u) € Za. Then we define the multiplicity of (1, u),
denoted by mult(), u), by

: ML ALt
mult(}\,u) = dunTL;Jl kernel { <I - [MQIL_I ygaL ! .
In particular, we say (A, u) is simple if mult(), u) = 1. .

THEOREM 2.5. Suppose that (A, p) = (A(™(u), 1), where A, s a simple eigen-
value of L. If ™) () # M) (1) for any m + n, then (A, ) s simple.

PROOF. If A = 0 or u = 0, the result follows from well-known results for a single
equation. Suppose then that A # 0, p # 0 and that c(), u) + d(), ) = A, while
¢(A,u) — d(A, p) is not an eigenvalue of L, where ¢ and d are as in (2.4). (The
proof in case c(, u) — d(, ) = A, is analogous to that which follows, and will be
omitted.)

By the proof of Proposition 2.3,

ALY ALt
kernel (I - [Mgl Ll gLt

()
Bzn [’
where = (A, — Af1)/Mf2 and Lz, = Ann. It suffices then to assume
Lu — Afiu — Afov = cz,, Lv — pgiu — ugav = cBz,
and show that ¢ = 0. Then
(L = pg2)(L — Mf1)u= Afa(L — uga)v + (L — pga)zn,
= Afalpgiu + cfzn) + c(An — pg2)zn
= Apfagru+c(2Xn — (Af1 + pg2))zn.
If 2Xn = Af1 + pgo, then ¢(A, 1) = A,. Hence

2 Af1 — pg2 2
(M p) = <——§—*> + Aufaegr = 0.

is

If such is the case, Ay < 0. Hence
N duhe | 4

) 5 T = AMAe
which implies \ ‘
Af1+
<_f1§£22_> = Mu(frg2 — f291) <0

bf (2.6), a contradiction. Thus 2), — (Mfi + ugs) # 0.
So we have

(L = pg2)(L = Af1)u = Mpfagiu+ c(2An — (Af1 + ug2))2n.
It follows that
(L= c(A p) + (A w)(L = A )u = c(2hn — (Mf1 + p4g2)) Tn.
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Since L — c¢(X, 1) + d(X, ) is invertible, it must be the case that

_c(2An = (Af1+ pg2))
N (N KR W iy

Since )\, is a simple eigenvalue of L, ¢ = 0, and the result is established.

3. Local bifurcation analysis. As previously noted, (1.6) is equivalent to an
equation of the form

(3.1) e = A(Xe+ H(},e),

where ()\ e) € R? x E, E a real Banach space, and A and H are as described
in §1. If dimQ = 1, T = [a,b], and E may be taken as (C}[a,b])? = Cjla,b] X
Cla,b], where G} [a b] is the space of continuously differentiable functions u on
[a, b] such that u(a) = u(b) with the usual norm (i.e. ||u|| = maxze(a,p) [u( |+
maxe(ap) [/ (2)]). If dim{l > 1, then E will denote the cross product [Uo TP
of the space of continuously dlfferenmable functions v with Holder continuous (of
exponent v, 0 < v < 1) first partial derivatives such that ulaﬂ = 0. (See [17 or
23] for a precise definition of these spaces.)

Tn either case, a point (Xo,0) = (Ao, 0,0, 0) will be said to be a bifurcation point
for (3.1) (or, equivalently (1.6)) prov1ded that for any € > 0, there is (A, p,u,v) €
R2? x E solving (3.1) such that (u,v) # (0,0) and ||(}, 4, u,v)— (Ao, k0, 0,0) |2 x & <
¢. B will denote the set {} € R2:(X,0) is a bifurcation point for (3.1)}.

Onr first. resnilt is an immediate conseauence of the fact that H (see (3.1)) is
higher-order in e.

PROPOSITION 3.1. BCX4.

We now aim to identify which members of ¥4 are also contained in B. Our
theorem on this topic is given considerable additional precision by Proposition 2.3.

THEOREM 3.2. (i) Let (A, p) = (A (1), p) € T4 with mult(A™ (), u) = 1.
Then (A\(™(u), p) € B.

(ii) Suppose all the eigenvalues of L are simple. Then B = X4.

(i) Suppose (A, p) = (A1(p),p). Let D ={u€ Cy" () (respectively C}a, b]): u
> 0 on Q and the outward normal Ou/dv < 0 on 0Q}. Then:

(a) If u € (0,A\1/g2), there is € > 0 such that if ()\ i, u,v) 18 a solution of
(3.1), (u,v) # (0,0) and (X, & u,v) — AV (1), 1,0,0)[[r2x5 < €, then (v,0) €
[D x DU [(-D) x (-D)].

(b) If p € (~00,0) U (A1/ga,00), there is € > 0O such that of (A fiyu,0) 15 @
solution of (3.1), (u,v) # (0,0) and ||(A, fyu,v) — (AP (4), 4,0,0)||r2x & < €, then
(u,v) € [D x (~D)|U](=D) x DI.

(iv) Let T = [a,b] and (A, p) = (A™(u),p), n > 1, with mult(A) (), u) =
1. Let D, = {u € C}[a,b]:u has n — 1 simple zeros on (a,b), u'(a) > 0 and
(=1)™u/(b) > 0}. Then:

(a) If u € (0,A\n/g2), there 1s € > 0 such that if (A iy u,v) 15 a solution of
(3.1), (u,v) # (0 0) and ||(A, i, u,v) — (XM (1), ,0,0)[R2 x5 < &, then (u,v) €
[Dn. X Dn] U[(=Dyr) % (—=Dn)].
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(b) If p€ (—00,0) U (An/g2,00), there is € > 0 such that if (), i, u,v) is a
solution of (3.1), (u,v) #(0,0) and ||(A, &, v) = (A™ (1), 1,0,0)|[r2x 5 < €, then
(u,v) € [Dy x (=Dp)]U[(—Dy) x D,].

PROOF. (i) is an application of a multiparameter extension of the Krasnosel’skii-
Rabinowitz Theorem (cf. [3, 7]). -

(ii) is a consequence of (i), Theorem 2.5, Proposition 2.2, and the fact that B is
closed. v

We shall prove (iii) only in case (a). The verifications for the remaining part
of (iii) and for (iv) are similar, and are omitted. Suppose then that (ili)(a) is
false. Then there is a sequence {(Am,fm,Um,vm)}%_; C R2 x E such that
(Am, thm, Um, Um) is a solution of (3.1) (or, equivalently (1.6)), (tum,vm) # (0,0),
(um,vm) & [D x DJU[(~D) x (—~D)] and (Ams o, Um, Um) = (A(w), 4,0,0) as
m — oo. The compactness of the operators A()) and H(),) imply the existence
of a subsequence {(Am,, lm,, Um;, Vm,)} such that

‘ Um,; Um.: I
/\mnﬂmga : 3 . ) —* )‘(1) s My, U, V),
(e T T il ) = 050
where (AW (), p, @, 5) solves (1.7) and (@,7) # (0,0). Proposition 2.3 implies
(2,9) € [Dx DJU[(—D)x(—D)]. Without loss of generality, assume (&, 5) € D x D.
Since D X D is open in FE,

Unn, © Uy,

(T2 T <2 %
for 7 sufficiently large. But (a,b) € D x D implies t(a,b) € Dx D for t > 0, a
contradiction. ‘ ‘

(iii) and (iv) of Theorem 3.2 have an immediate noteworthy consequence. We
now state the appropriate result only in case (iii)(a). The remaining results are
completely analogous, and their statements are left to the reader. V

Let § = {() p,u,v) € R2 X E: (), p,u,v) solves (3.1) and (u,v) # (0,0)}. By a
continuum we shall mean a closed, connected set.

COROLLARY 3.3. Let C C S be a continuum such that (A(w),p,0,0) € C,
where 0 < i < A1/ga. Suppose C' C C\(B x {0}) is a subcontinuum of C such that
C' C B(AY(u), 4,0,0;€), where € s as'in Theorem 3.2(iii)(a). Then either

C'CR®*xDxD or C'CR?x(-D)x(-D).

Theorem 3.2 gives a qualitative description in certain instances of the nontrivial
solutions in an R?X E neighborhood of a bifurcation point. We now use a Lyapunov-
Schmidt type procedure by which we may, under appropriate conditions, obtain a
count on the number of such solutions for particular parameter values (cf. [26]). For
the remainder of this section, we assume that A = L (cf. (1.6)), and, for the sake of
convenience, employ much of the notation of [26]. In addition, f Q CRY for N > 1,
we shall take [Co((2]? as our Banach space E for the remainder of this section. Our
purpose here is to facilitate use of the contraction mapping principle. Since, as is
well known [17], L™! extends to a compact operator from Co(f2) — Cy(1), there
is no difficulty in making this change. Furthermore, no essential information is lost
in the process. Any solution to (3.1) which belongs to [Co(f2)]? is necessarily a
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classical solution by the smoothness of the nonlinearity and the regularity theory
for elliptic partial differential equations. The solution set is therefore the same in
[Co(@)]2 as in [C3™()]?. Moreover, the topologlcal properties of [Ca(()]? used
in Theorem 3.2 (namely, that the set D is open in Cy"(1)) are unnecessary for the

following arguments.
Write (1.6) as

(3.2) Lu = A[fiu+ fav+ f(u,fu)], Lv = plg1u + gav + §(u, v)],

where f,§ are higher-order and u|0Q = 0 = v|0Q). Letting G = L;l, (3.2) can be
rewritten ' ‘

(33)  $=MAGH+AGN(9),
where ¢ = (%), E = [Co (ﬁ)]2 (or [C3(D)]?, as indicated above),
(xo\ [ 5 P (6 o\ o Ffauw)
low) A7 e w) 97 o 6] M7 G )

Let A* = ()6 ;?> be such that mult(A*,u*) = 1 and A* # 0, p* # 0. Let
N(I - A*AG) = [¢*], with ||¢*||z = 1. Let

_ * A= A* 0 N 0
LJVA~( - M_w>_<0m).
Then (3.3) is equivalent to

(3.4) ¢~ A Ap=71Ad+AGN(d),

where 4 = A§. Since A is compact on E and multA* =1, E = N @ R, where
N and R are nullspace and range of I — A* A, respectively. Thus we may define a
linear homeomorphism T: E — E' by

where v € E* (the dual space of E) is such that (¢*,~) = v(¢*) = 1 and (z,v) =0
for all z € R. (For example, if L is selfadjoint when viewed as an operator on

L*(Q), fa = g1 and 5
L5+ 8 wro

where ¢* = (:j), then v may be realized as

(2) A )

with k= fo((w*)?/A* + (u°)2/p°) da)
(3.4) is thus equivalent to

(3.6) ¢=a¢* + T rAd+ AGN(4)],
(3.7) | o= (g,7).

As in [26], we have the following result.
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LEMMA 3.4. There are positive w, 0, § such that if o < w and ||(11,72)||r2 < o,
the right-hand side of (3.6) is a contraction mapping of B(0,8) C E into B(0,6).

Let q?)(a, 71,72) denote the unique fixed point for (3.6). In particular, ¢(0, 1, )
= 0 for all 74,7 with ||(71,72)||r2 < o, where o is as in Lemma 3.4. -
Solvability of (3.6)—(3.7) can readily be shown equivalent to

(3.8) (T rAd +AGN ()], ) = 0.

A simple computation will show that for all z € E, (T~ 'z,v) = (z,7) and
(A*Az,v) = (z,7). Thus (3.8) may be simplified to show solvability of (1.6) is
equivalent to

(3.9) (A7*A* Y1 A + AN($)),~) = 0.
Now let ,
(3.10) | S(a,71,72) = (A A1 (A + AN (), 7).

Then § is smooth in (a, 1, 7). If (8°5/80%)(0,0,0) =0 for s =0,1,...,r — 1 and
(07S/8a7)(0,0,0) # 0, the Malgrange Preparation Theorem [18] may be utilized
to show
(3.11)

Sy, m) = [0 + pr(r,m2)e ™+ + proi (11, ) a + pr (11, 72| Ea, 71, 72),

where p;(71,72) is smooth in 7y and 7, |r1|,|r| sufficiently small with p;(0,0) =
0,1=1,2,...,7, and E(a,7,7) is smooth in a,m and 7, ||, |n1|,|m| small with
E(0,0,0) # 0. Furthermore, one may readily observe that p,(r;,7,) = 0. Hence we
have the following result.

THEOREM 3.5. If, in (3.10), (8*8/8a%)(0,0,0) =0, ¢ = 0,1,...,r — 1 and
(078/8a7)(0,0,0) # 0, then there are positive w’ < w and o’ < o, with w, o, as in
Lemma 3.4, such that (3.11) holds. Thus the number of solutions (), u,e) of (1.6)
with 0 < |le]] < 6 and ||(A, 1) — (\*,1*)||r2 < o is the number of distinct real
nonzero roots of the polynomial

Q" 4 pi(r, 12)a" T2 4 pra(r, o)+ proi (T, ),
where 71 = A — A* and 7y = p — p*, with |o] < W',
Note that this number r may be determined from (3.9) with 7, = 0 = n:
(3.12) (A~'N(d(e,0,0)),~) = 0.

Suppose now that f and g are analytic and that for w,2 € R with |w|,|z|
sufficiently small, f(w,2) = Y, 5o fimw!'z™ and §(w,z) = Y limza Gmw'z™.
Then it is the case that - B

r>s=min{l +m:l+m >2and fi, #0 or g, # 0}

We now give conditions under which r = s. Observe that ¢(,0,0) =
ZiZI bigoa® with ¢r00 = ¢* = (”) and that in the expansion of the left-hand

v
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side of (3.12) terms involving &® occur only in (A~ N(ag¢*),v). One may readily
show that

Z (g2 fim — fagum )u™tv*™alt™

3 1 l4+m>2
3.13) (A7 'N(a¢*),q) = ——— oy )
(3:13) (%)) f192 — fa01 | Z (f19im — 91 frm)u*v*malt™ K

l4+m>2

From (3.13), we see that r = s provided

Z (92 fim — f29lm)“*lv*m

(3.14) Hm=s Y ) #0.
> (figim = g1 fim)uto™

l+m=s

In case A is symmetric, L is selfadjoint (with respect to L?(Q)) and

*\2 *\2
(S22 e
0
(3.14) reduces to
(3.15)

(/(z(u*)”l)' o e(u) [(QQflm — fagim) + (%;) e(w*)(frgim — f2fim)| #0,

I+m=s

wrhoara o ¥ C‘(ll*\l“*
prommEme AT 2

4. Multidimensionality questions. In problems in which more than one
parameter appears, such as (1.6), a new aspect of study arises quite naturally in
addition to the concerns of §3. Namely, there is an obvious expectation that the
set of nontrivial solutions to the problem forms a higher dimensional set of some
sort. As a simple example (which also illustrates the third alternative to Theorem
2.7 in [8]), consider the equation

(4.1) z = (|A1] + |[Aal)z + (1 4+ A2+ A2)z3,

with A; € Ry, M2 € R viewed as parameters, and z € R. Then (4.1) is of the form
(1.4)-(1.5) and has solutions (A1, A2,0), A1 € R, A2 € R, and (A, Mg, z) satisfying

z2=m‘_‘_:\_2_l).‘
L+22+ )3

The principal results on this multidimensionality of bifurcation surfaces to date
are the global results of Alexander and Antman (3, 4] and Fitzpatrick, Massabo
and Pejsachowicz [14, 15, 16]. The main theorem of [3] is applicable in the context
of (1.6) (as (1.5) holds for (1.6) with k = 1—cf. [7]), and, as such may be expressed:

THEOREM 4.1. Consider (1.8), or equivalently (3.1). Let (Ao, p0) € R? be a
simple generalized characteristic value of (1.7). Then there emanates from
(Aos £0,0,0) € R2X E a subset S(yq,u0) © S which is global in the sense of Theorem
2.2 of (8] and which has the following properties:

(1) Staouo) N[S\(B x {0})] 4s connected.

(4.2)



COUPLED MULTIPARAMETER NONLINEAR ELLIPTIC SYSTEMS 275

(i) Sroo) NIS\(B X {0})] has topological dimension > 2 at each point. (Note:
For a precise definition of topological dimension, see Alezander and Antman (3]
and the references therein.)

REMARK 4.2. Theorem 4.1 does not assert that if S'( Xo.uo) 18 the component of
§ containing (Ao, tio,0,0), then S¢y; ,.0)\(B x {0}) has topological dimension > 2
at every point. It is the case, however, that along one-dimensional restrictions of
parameter space, S5, .,) is described by the global Rabinowitz bifurcation theory
[3, 7]. As this fact will be of significance in the subsequent sections of this paper,
we make this observation precise.

DEFINITION 4.3. A continuous map h: R — R?is a proper crossing of changing
degree at (Ao, po) € R? relative to (1.6) (or (3.1)) if the following conditions hold:

(i) R(0) = (Ao, po) and |h(t)| — oo as t — =+oo.

(ii) If o > 0, there is a neighborhood V of (A, o) in R? such that

h™HV NR(R)) C (—,7).
(iii) There is a number &5, > 0 such that:
(a) The Leray-Schauder degree degyg(I — A(h(t)), B(0,1),0) is defined for all ¢
such that [t| < ex and t # 0, where A(), 1) is given by (1.8);
(b)
degLS (I - A(h’(T))v B(Oa 1)’ 0) = Sgn(Tﬁ) -degpg (I - A(h(,@)), B(01 1)a 0)7
where 7,8 € (—¢ep,en), T#0, B#£0.

THEOREM 4.4. If (Ao, o) € R? 15 as in Theorem 4.1 and h is a smooth proper
crossing of changing degree at (Ao, po), and if S(i;\o,uo) = S(xo.uo) N[R(R) X E], then
S('ﬁ\m 10) satisfies one of the following conditions:

(i) S{f\o,#u) 15 unbounded. - '

(ii) 'S(’f\o,#o) contains (A*, u*,0,0), (X, u*) # (Ao, po), with (\*, u*) a generalized
characteristic value of (1.8).

REMARK 4.5. Cf. [3, p. 349]. See also §2 of [7].

While the methods used to establish the main result (Theorem 2.2) of [3] are
not of primary interest here, two features are noteworthy. First, techniques from
algebraic topology in addition to the topological degree of Leray and Schauder were
employed. Second, no differentiablity assumptions with respect to (u, v) were made,
other than those on (1.4). Of course, such results may be sharpened when more
precise information is given, as in (1.6).

Therefore let us now assume that A = L in (1.6), that f and g are analytic and
that (3.14) is valid. Consider the Malgrange polynomial

(43) M(CL’, 7-1772) - as~1 + f1 (7-11T2)a3—2 + ps—l(TlaT2)7

where 71 = A — X*, 73 = u — p*, (A*, u*) a simple generalized characteristic value
of (1.8), as in the preceding section. For our purposes, we restrict 1,7 in (4.3)
to be real numbers such that |(m1,72)| < ¢/, where ¢’ > 0 is as in the statement
of Theorem 3.5. Let r(r1,72) € R — {0} be such that |r(r,m2)| < w/, w' > 0
as in Theorem 3.5, M(r(r1,72),71,72) = 0 but My(r(r1,72),71,72) # 0. Then if
S(a,71,72) is as in (3.10), S(r(r1,72),71,72) = 0 but Sa(r(r1,72),71,72) € R — {0}.
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The Implicit Function Theorem then implies that S\(R? x {0}) is a smooth two-
dimensional manifold in a neighborhood of (A, g, d(r(A—A*, p—p*), A= X*, p—pu*)).
In particular, there are ¢, 0 < 0" < ¢', and a smooth function 7: B(A, u;0") —
R — {0} such that 7(\, p) = r(A — A*, p— p*) and such that if (N, p') € B(A, u,0"),

then )
Nu p(FN ), N = A5 —p*)) e S _,(RZ x {0}).
We have the following result.

THEOREM 4.6. Suppose A = L in (1.6), f and g are analytic, and that (A*, u*)
15 a simple generalized characteristic value for (1.8). Suppose that (3.14) holds with
r = s and that (A, u) € R? with ||(X, u) — (A\*, p*)|| < o', where o' is as in Theorem
3.6. Then if ri(A=X*,u—u*), 1= 1,2,...,m, are simple real zeros of (4.3) such that
0<|ri(A=M,p—p*)| <, i=1,2,...,m, and ' 15 as in Theorem 3.6, m < s—1
and [S\(R? x {0})] N [B(A, u;0") x B(0,8)] contains m smooth two-dimensional
manifolds Dj, ¢ =1,...,m, with (A, g, drs(h = X p— "), A= M p—p*)) € D;

MAnGouis gy, © = 4,.. i — AR BT, A T A )] & &,

where o' € (0,0') and § s as in Theorem 3.5.

The number m above can actually be seen to be 0,1 or 2, provided ¢’ and w’
are sufficiently small. That such is the case can be seen by combining Theorem 3.5
with the constructive bifurcation theorem of Rabinowitz (Theorem 1.19 of (23] or
its generalization to several parameters, due to Alexander and Antman, Theorem
3.12 of [3]). As a consequence, the cases r = s = 2 and r = s = 3 are the most
important, and merit separate consideration.

Suppose now (3.14) holds with r = s = 2. In this case W(a.71.7) = a +
p1(ri,72). Thus for (A, u) € B(A*, u*;v)\Z4, v is sufficiently small, (1.6) has at
most one nontrivial solution ¢ € E with ||¢|| < §. Consider now the one-dimensional
restriction of the parameters along normals to X4 for (X, u') € B(A*, p*;v) N Za,
where we assume - is sufficiently small so that mult(\,p’) = 1 for all (M, p') €
B(M\*,u*;7) N 4. One may then adapt Lemma 1.24 and Theorem 1.25 of [24]
of Theorem 2 of [11] to assert the existence of two subcontinua of nontrivial solu-
tions (with parameter values along this one-dimensional restriction) meeting only
at (M, ';0). The following result then obtains.

COROLLARY 4.7. Suppose (3.14) holds with r = s = 2. Then if (A*,u*) s as
Theorem 4.6 and (A, u) € B(A*,p*;v) — T4, v > 0 and sufficiently small, there
is o unique e = ¢(—p1(A — A*, 1 — p*), A — A*, 1 — u*) such that 0 < |le|| < § and
(A, u,e) € S, where § 1s as in Theorem 3.5.

COROLLARY 4.8. Suppose (3.14) holds with r = s = 3 and (\*,u*) is as in
Theorem 4.6. Then one of the following obtains:

() If pa(r1,72) = 0, then if (A, p) € B(A*,u*;v)\24, v > 0 and sufficiently
small, there is a unique e = ¢(—p1 (A — A*,p — p*), A — M, pu — p*) such that
0< |le]| <& and (A, e) € S, where & is as in Theorem 3.5. (i) If pa(r1,72) # 0,
there 1s a component V' of B(X*, u*;v)\Xa4,v > 0 and sufficiently small, such that
SN [{(\u)} x B(0,6)°] # ¢ for all (A\,pu) € V, where B(0;6)° = B(0;6)\{0}.
Furthermore, § N (V x B(0,6)°) is a two-dimensional set.

If (ii) above holds and

SN((BO,u*,7) = (4 UV)) x B(0,6)°] = ¢,
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then (/\,lf') ev implies Sﬂ[{()\, :u')}XB(Ov 6)0] = {()‘7“7 61), (’\) My 62)}7“61 '7-‘Lé €2y %.€.
SNV x B(0,6)°) is the union of two nonintersecting two-dimensional manifolds.

- PROOF. Here W(a, 71, 72) = o+ p1(71, T2)a + pa(71, 72). (i) follows as in Corol-
lary 4.7. If pa(r1,72) # 0, then it cannot vanish on any open subset of B(A*, u*; )
by principles of analytic continuation [12]. Lemma 1.24 and Theorem 1.25 of [24]
may then be used to complete the proof.

5. Determining global alternatives via the linearized system. Consider
again (1.6) (or, equivalently, (3.1)). Theorem 4.4 asserts that if mult()\g,uo) =
1 and h is any smooth unbounded curve in R? which meets 4 transversely at
(Ao, o), then S(hj\o, uo) conforms to the global Rabinowitz alternatives.

Recall that (3.1) is a special case of (1.4)-(1.5), as is example (4.1). Example
(4.1) illustrates a situation where the second alternative of Theorem 4.4 always
obtains. As perhaps should be expected, such is not the case with (3.1), as we
now demonstrate. Let us suppose that all the eigenvalues of L are simple. Then
Theorem 2.5 asserts that if A(™) is as in §2, mult(A(™)(u), u) = 1 except for points
(A, 1), where A = A(™ () = A(™) (1) and n # m. Consider such a point, say (), u).
Theorem 2.2(i) shows that there are exactly two positive integers, say n and n’, such
that A = A(™(u') and M = A(")(u’). It is now easy to see that it is possible to pass
a smooth curve h through (X, u') such that A(R) N B((X,u");e)NZa = {(N,u)}
for £ > 0 and sufficiently small. Furthermore, h may be chosen to have the following
additional property: namely, if h(t') = (N, u'), then

L=t Lt
degrg (I‘ h{t) - [L“l -1

is defined and constant for ¢ € (t' - 6,¢' +6), 6§ > 0 and sufficiently small, ¢ # ¢'. (It
is important to note that, while it is possible to choose such an h having both the
above properties, not all curves satisfying the first property will satisfy the second.
This fact imposes a limitation on the results that follow.)

Before stating our main result on this topic, we need two preliminary results.
We begin with the following theorem.

; B(0; 1);0>

THEOREM 5.1. Let h be a proper crossing of changing degree at (Ao, o) relative
to (1.6) as in Definition 4.3. Assume that h(R)NX 4 is discrete. Let C ?Ao, o) denote

the component of SN (h(R) X E) meeting (Ao, tio,0,0). Then if C’(‘AD, o) 18 bounded,
the set

{0 k) € Ta: (0,11,0,0) € Chy, gy (A, 1) = () and
Jim (degys (1 — A(h(s)), B(0;1),0))

# Jim (dogzs( — A(h(s)), B(0: 1)0)}

contains an even number of elements.

PROOF. The result is readily established by an extension of the methods of [11]
to the results of [7].
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LEMMA 5.2. Let (2.7) hold with n =1 and m = 2. Assume all eigenvalues of
L are simple. Let Zy denote the component of R?\S4 which contains the origin.
Let (Mo, o) € T4 be such that mult(do,po) = 1, (M, p') € [R}\(Z4 U Zp)] U
{(\ p) € Tarmult(), u) = 2}. Then there is an injective smooth proper crossing
of changing degree h at (Mo, o) such that h(t') = (N, ') for some t' > 0 and such
that h(R) N {(X, 1) € Tarmult(X, p) = 1} = {(Xo, o)} |

PROOF. The result is a consequence of the analysis of §2. That (2.7) holds with
n =1 and m = 2 guarantees that the lower branch of () is the only member of
the collection of curves of §2 with no intersections. The condition that (X, u') & Zo
is therefore unavoidable for (Ao, o) & 8Z (the lower branch of A(1)). If (Ao, po) €
0Zp, (N, ') may be taken in the larger set

RA\ZAJU{(A, p) € Ba:mult(, p) = 2}.
We now state our main result on this topic. o
THEOREM 5.3. Let (Mg, o) and (N, ') be as in Lemma 5.2. Suppose there is

a proper crossing of changing degree h at (Mo, po) such that h(R)N X4 s discrete,
(M, u') = h(t'), t' >0, and the set

{ (A u) € ZaNh(R): (A p) = h(t) where
Sl_i_gl_ (deg(I - A(h(s))a B(Oa 1)1 O))

7 Jm, (degys (1 — Aa()), 5(0; 1), 0)) | = {{A0, o) -

Suppose that C?)\O o) 18 as in Theorem 5.1. Assume also that C?,\o o) MR((—00,0])x
E] = {(Xo, #0,0,0)} and that (N, p’) € 4. Then one of the following obtains:

(i) There 15 t* € (0,t") such that C?/\o,#o) bifurcates from infinity at (\*, pu*) =
h(t*).

(i) There 15 e # 0 € E, such that (), ' e) € C?)\o,uo)'

PROOF. Apply Theorem 2.5 of [7] and Theorem 5.1.

REMARK 5.4. A more general formulation of the result of Theorem 5.3 is
possible: If h is a proper crossing of changing degree at (Ao, yo) with respect to
(1.8) such that h(R)N X4 is discrete with only one change of topological index for
(1.8) along h(R), then Cf‘,\o, o) Satisfies alternative (i) of Theorem 4.4. However,
Theorem 5.3 amply demonstrates the impact that the structure of X4 has on the
process of identifying global behavior of bifurcating nontrivial solutions to problems
of general type (3.1). We note that no differentiability requirements are made
of such problems, beyond those of (1.4). Thus the methods described here are
applicable for more general nonlinearities than those of (1.6).

COROLLARY 5.5. Suppose (Ao, po), (', p4) and h are as in Theorem 5.3 and
that (ii) obtains. Then of (N, pu',e) € 3('3‘0,“0) (see §4), there is a set Ty ey Of
dimension > 2 such that (X, 1, e) € Tin ure) © S(ag.po)-

REMARK 5.6. Note that it is not possible to have h(t) = {(t,0):t € R} or
h(t) = {(0,t):t € R}. Consequently, under the assumption that the eigenvalues of
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L are all simple, a result distinguishing global Rabinowitz alternatives purely on
the basis of the linearization of the problem as in Theorem 5.3 is not available in the
single equation case. Additional information on the qualitative behavior such as
global preservation of nodal structure to solutions in the case of nonlinear Sturm-
- Liouville boundary value problems is needed. That such is the case is indicative of
the extra information obtainable in several parameter systems of equations. This
information should be exploitable in much more general contexts than ‘we have
pursued in this section. ‘ '

6. Global persistence of positive solutions. The descriptions of nontrivial
bifurcating solutions to (1.6) provided by Theorem 3.3 are local. Some global results
of this type may be realized as follows. Consider once again (1.6). Assume that L
(or more generally, A) is such that strong maximum principles [17 ] apply, L has
simple eigenvalues and, as usual, that (2.5)—(2.6) is valid. We make the following
additional assumptions on nonlinearities f, g:

(6.1) f and § map [0, 00) x [0, 00) into [0, 00);

(6.2) f and § are odd.

LEMMA 6.1. Suppose (6.1) holds and let D be as in Theorem 3.3. Suppose that
{(Ars oy Uny vn) 3321 C S 15 a sequence with A > 0, pn >0, up € D, v, € D
for n > 1. Then if (An, tn, Un,Un) — (Ao, Ho, Uo,V0) as n — 0o, where g > 0 and
po > 0, esther (ug,v) € D X D or ug =0 and vy = 0.

PROOF. ug > 0 and vp > 0. Suppose (uo,v0) # (0,0) and (ug,vw) &€ D x D.
Then one of the following holds:

(i) There is z € Q) such that ug(z) = 0 or vo(z) = 0.

(ii) There is 7 € 9 such that (Qug/8v)(n) = 0 or (Jug/dv)(n) = 0.

If (i) holds, suppose with no loss of generality that uo(z) = 0. Then Lug (or
:q’LLo) = )xofﬁl() + )\ofz’l)o + )\of(’LL(),’l)o) > 0 on Q, by (2.5)—(2.6) and (6.1), and
up > 0 on (1. Since up(z) =0, up = 0 by the maximum principle. Hence Ao fovg +
Xof{(0,v0) = 0. By (6.1) and (2.5)~(2.6), vo = 0, a contradiction. If (i) holds and
(Guo/0v)(n) = 0, then Lug (or Aug) > 0 on 0, up > 0 on 80, ug(n) = 0 and
(Ouo/0v)(n) = 0. Thus up = 0 by the strong maximum principle, and vy = 0 as
above, a contradiction. Cf. [23].

LEMMA 6.2. Suppose (A, p) € X4 such that (), ) satisfies both

_ )\m(QZIJ' - )‘m)
(6.3) A= (f192 = f291) — Amf1
and
(6.4) A = (g2t — An)

(f192 — fag1)u— Anfr’
n < m. Suppose also that the eigenvalues of L are all simple. Then if (X, u, @, 7) s
a solution of (1.7) with (@,7) # (0,0), then there is x0 € Q such that @(zg) < 0 or
’5(.’1)0) < 0.

PROOF. Since (A, i) satisfies (6.3) and (6.4) with n < m, then m > 1 and p >
)‘nfl/(flfh —f2gl)- Furthermore, C()‘a M)+d(Aa /*L) = A and c(/\,,u) —d()‘a :u) = An-
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Arguing as in Proposition 2.3 and using the simplicity of A, and A, it follows that
{(z,y) € E: (A, p,z,y) satisfies (1.7)}

={c1 (51 )mm-l—Cz (; ) wnicl,czéR},

where Lz, = AmTm, LTpn = ApTn, Bm > 0 and B, < 0. Since m > 1,
necessarily changes sign on (). In the special case n = 1, z; may be chosen positive
on (2. In this instance, as u > A1 f1/(fig2 — f291) and By <0, fiz; < 0on (). Hence
it suffices to verify the claim only in case cjcy # 0. By Theorem 1 of [1], there is
an open subset (' of Q) such that z, > 0 on (1 but z,, changes sign in ()'. There
are four cases: ¢1 >0, ¢2 > 0; ¢1 >0, ca<0; ¢1 <0, c2>0; ¢1 <0, c2 <0.
We argue only in case ¢; > 0 and ¢ > 0. In this case there is zg € (¥ such that
T (z0) < 0. Then ¥ = ¢1BmTm + c28nTn is such that ¥(zp) < 0.
We may now give the following result. ) -

THEOREM 6.3. Suppose L is such that strong mazimum principles apply and
that L has simple eigenvalues Ay < dp < -+ < A, — 00. Suppose f and g satisfy
(6.1)~(6.2). Let C be a continuum tn § N ((0,00) x (0,00) x E) such that C meets
L x {0}, where

AM(gap — M) /\1}
21={,\, EXa= ! O<p< 2y,
A (A p) € B4 (f1g2 — fag1)p — Mif1 . g2

Then

A St LS RN Y \ e \ ™ .. ™I

UA\LA AUT) =\ AL A AL
U [(0, 00) % (0,00) x (=D) x (=D)].

PROOF. Theorems 2.5 and 3.2 and Lemma 6.1 show that the result holds as
long as CN(R2x {0}) C (£%) x {0}. That such is the case follows from Proposition
2.3 and Lemma 6.2.

REMARK 6.4. It remains unresolved whether conditions similar to (6.1) exist
so that analogous results obtain for higher nodal properties in case {1 = [a, b).

REMARK 6.5. Theorem 6.3 may also be obtained by adapting ordered Banach
space methods (e.g. [2]) to a multiparameter situation.

7. The n-parameter case. Now consider (1.3). The linearization of (1.3) at
(U1, un) = (0,...,0) is given by the system of equations

(7.1) Lv(z) = N\ Z fi5v5 (),

t=1,...,n, where z € Q and v;(z) =0 for z € 90, : =1,...,n. The coefficient
fij = (8£:/8t;)(0,...,0), where f; = fi(ts,...,tn), ti €R, k=1,...,n. fn=2,
(7.1) reduces to (1.7). In analogy to (2.3), if (7.1) holds, then

L-Mfir  =Mfiz--—Mfin

—Aafar L—Xofaa- = Xafon

(7.2) det w=0

')\nfnl "')\nfnZ"'L“)‘nfnn
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with w = v;, 1 =1,...,n. Observe that if A(L) denotes the operator (a polynomial
in terms of L) on the left-hand side of (7.2), then

n

(7.3) AL) = [ = di(A,- ., M),
i=1
where ¢;(A1,...,An) is an algebraic expression in Ay,...,An, % = 1,...,n. Let

p1 < p2 <+ < Um < --- denote the eigenvalues L subject to zero boundary data.
Then 34 = {(A1,..., ) € R™ ¢5(A1,..., An) = pim for some 4 € {1,...,n} and
for some m € Z*}. A detailed analysis of the bifurcation phenomena associated
with (1.3) in the spirit of §§3, 4, 5 and 6 is possible once a detailed examination of
Y 4 is made as in §2.

8. An illustration. Now consider an application of the results of §§2-6 to a
particular example. Let us take () = [0, 7] and examine

8.1) —u(z) = A2u(z) + v(z) + v? (z)v(z) + v (z)],
—v"(z) = plu(z) +v(z) + u*(c)o(z) + v3(z)),
u(0) = 0 = u(w), v(0) =0 = v(n).
The problem
(8.2) ~w"(z) = aw(z),

w(0) = 0 = w(), has simple eigenvalues & = m?, m = 1,2, ..., with corresponding
eigenfunctions sinmt. Furthermore in terms of §2, f1 =2, fo=1, g1 =1, go =1
and figz — fag1 = 1. Thus a simple computation shows

2 2
XA ={(/\,/L)ER2:A=ZL—;L(—Ii—L2) forsomeueRandn€Z+}.

2n
Let A(™) denote the linear fractional transformation given by

n?(u—n?)

(83) A () = AT

Condition (2.7) for the intersection of A(® and A(™), n < m, specialized to (8.1),
becomes
(8.4) n?/m? < 3 - 2V2.
Furthermore, Theorem 2.5 implies that if A(™) (u) # A(™) (u) for any m + n,
mult(A™ (), p) = 1.

One readily observes that A(1) does not meet A(2) but that A1) does meet \(¥)
for k > 3. Figure 2 lists the linear fractional transformation A(%(") k(n) > n, of
first intersection for A(™), n < 15, and Figure 3 gives a schematic diagram of the
intersections of A(™), n < 8.
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Let
oY= {()\,,u):)\ = %:—;,—oo <p< 2}
and let T'*! denote the component of R2\T¥ containing the point {(Aw)} ={(1,0)}
(see Figure 3). Then the analysis of §5 holds for parameter values in T%. In
particular, Lemma 5.2 is valid for (Ao, ug) € 4 = S 4\ZY and (X, u) € TINS .

Observe also that (8.1) is such that (6.1)—(6.2) are satisfied. Since the eigenvalues
of (8.2) are all simple, we can conclude from §6 that solutions of the form (A iy u,v)
with u(z) > 0 on (0,7) and v(z) > 0 on (0, 7) emanate from SN [(0, 00) X (0, 00)]
and persist globally for A > 0, u > 0.

It remains to observe that 7 = s = 3 in the statement of Theorem 3.6 for all
simple bifurcation points (except possibly when (), i) = (4n2,0) or (0,n2)). To
this end, first observe if (w, 2) = (asinnt, Bsinnt) is a solution to the linearization
of (8.1) at (A, ) = (n®(u—n?)/(u—2n2), u), then B(n2 —u) = po.. Hence if u # n2,

(8.5) B = ap/(n® - pu).

Next observe that if 1/A(u) + [e(1)]?/u # 0, where A() = n?(u — n2)/(u — 2n?)
and e(u) = p/(n® — ), then the quantity

Jy () e

and the desired result is obtained by calculating that (3.15) is nonzero. Note that
Lo @l p=2m® 1 [ % }
Alw) Iz n2(u—n?) | (n?—p)?
(4= 202 (=) + 2 _ (= %)’ +
| n2(y — n2)2 n2(u — n?)2 _
In this example, one may readily conclude that (3.15) being nonzero is equivalent
to

#0 if u#0,n2%, 202

(8'6) Z [E(ru)]m [(g2flm - f2glm) + '/'\%Lla(“)(flglm - folm) # 0,

4+m=3
where e(u), A() are as above, and
Jos =0, go3=1,
fiz=0, g2 =0,
fau=1, g =1,
faoo=1, gs0=0.
Calculation reveals (8.6) to be

on ) (35) - (5) + (i) (72)
() () -

(8.7) simplifies to

—2u* + 3n%ud — 4n®u? + 3npu — n8
(b = 2n2)(n? — p)3

(8.8)




284 R. 8. CANTRELL

FIGURE 3

To show (8.8) # 0if uu # 0, n?, or 2n?, it suffices to consider the polynomial P(n, W)

51'\"&‘ ).IJ
(8.9) P(n,p) = ——2u4 + 3n2u® — 4n®u? + 3nu — nd.

Let H(n,u) = —2u* + 3n2u® and G(n p) = —4ntp® + 3n8 u A simple com-
putatlon shows that P"(n,u) < 0 for all 4 € R and that P'(n,in?) = $n® while
P'(n, 3n?) = $3n8, where ' = d/du. Consequently,

max P(n,u) < max P(n,p)< max H(n )
HER

wel4n? ) pelyn? in

+ max G(n,u)-nd

p€(dn2,n?)

Now H'(n, ) = —8u® + 9n2u?, H'"(n,p) = —24p* + 1802y, G'(n,p) = —8ntu +
3n8, and G"(n, ) = —8n*. It is now easy to see that

max H(n,u) = <n,§n2> = ?ﬁns_ :

welhn®gn] 5 625
and that
— 1.2\ 1.8
ue[gz%?(%nnG(n’“) =G (n,3n?) = §n®.
Thus e
< 1 ‘g
Py < max Py < <625 - 1) P

Thus (8.7) # 0, and we conclude the existence of two “small” nontrivial solutions
near (A(™(y), ,0,0), where g - A(™) (1) # 0 and mult(A™ (), u) = 1.
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